ETV-ICP-OES THE MOST ACCURATE DETECTION LIMITS FOR HIGH PURITY CARBON AND GRAPHITE

ETV-ICP OES

Electro Thermal Vaporization & Inductively Coupled Plasma Optical Emission Spectrometry

The high-tech applications of graphite (semiconductors, photovoltaics, nuclear...) often require strict control over impurities in the material. After setting the standard for supplying the highest purity graphite in the industry, Mersen now offers the most sophisticated method for measuring graphite purity. The ETV-ICP analytical method has been applied to develop a powerful, rapid and reliable tool for analysing impurity content of solid samples with very low limits of detection. ETV-ICP has proven to be the reference for analysing graphite and can be considered as state-of-the-art technique.

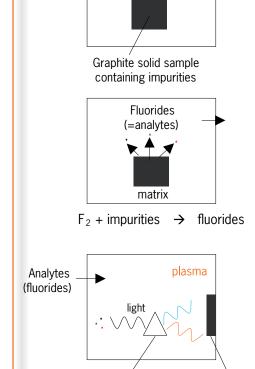
How does it work?

Sampling, loading and heatingThe graphite sample (solid or powde

The graphite sample (solid or powder) is loaded into a high temperature graphite furnace. The sample is heated up to 2800°C.

Electro Thermal Vaporization

Freon gas and Argon carrier gas circulate in the furnace. The precursor gas decomposes into Fluor (F2), that reacts with impurities contained in graphite to form fluorides (analytes), and extracts them from the graphite matrix.


Inductively Coupled Plasma

The gas carrying analytes (fluorides with impurities) is introduced into a plasma chamber. Molecules are excited under plasma and emit light with different wavelengths characteristic of each atom of impurity.

Optical Emission Spectrometry

Light is then decomposed by wavelength through a polychromator (prism-like) and analysed by a spectrometer. Light intensity at a given wavelength is directly proportional to the concentration of an atom in the plasma. Thus exact content proportion of each atom can be calculated.

polychromator

 F_2

Argon Freon

gases

2800°C

spectrometer

ULTIMA 2) CHR

Advantages of the ETV-ICP analytical method

- Contamination-free introduction of samples without sample decomposition or dilution. Solid as well as liquid sampling is possible.
- Sampling and calibration of graphite possible with existing standards and reference solutions, which is not the case with the GDMS method (Glow Discharge Mass Spectrometry).
- Very effective thanks to high transport efficiency of gases used. No spectral interference from the matrix.
- Simple and rapid acquisition: up to 50 samples analysed per day with automatic loading. Suitable for routine analysis.
- Very low limits of detection for most elements of the periodic classification, 1 - 50 μg/kg = ppb (parts per billion).
- Perfectly adapted to purified graphite, carbon/carbon composite and carbon insulation materials.
- Value-added service for customers.

ETV-ICP-OES, Limits of detection

H Hydrogen				Quantified with ETV-ICP OES			Detection Limits ug/Kg = ppb (Parts per Billion)										
Li Lithium 5	Be Beryllium	with other parameters Not Quantified											C Carbon	N Nitrogen	O Oxygen	Fluorine	Neon
Na ^{Sodium} 10	Mg Magnésium 0.1	Not Possible to Quantify					Audminiant Sincon Phosphoras Sanat									Cl	Argon
K Potassium 10	Ca Calcium	Scandium	Ti Titanium 2	V Vanadium 2	Cr Chromium	Mn Manganese	Fe Iron 2	Co Cobalt 2	Ni Nickel	Cu Copper 2	Zn Zinc	Gallium	Germanium	As Arsenic 20	Se Selenium 20	Br	Krypton
Rb Rubinium	Sr Strondium	Y Yttrium	Zr ^{Zirconium}	Nb Nobium	Mo Molybdenum	Tc Technetium	Ru Ruthenium 20	Rh Rhodium 5	Pd Palladium	Ag _{Silver} 10	Cd Cadmium	In Indium 30	Sn ^{Tin} 10	Sb Antimony 50	Te Tellurium 20	lodine	Xe
Cs Cesium	Ba Barium	La Lanthanum	Hf Hafnium	Ta Tantalum 10	W ^{Tungsten} 10	Re Rhenium 5	Os Osmium	Ir Iridium	Platinum	Au _{Gold} 50	Hg Mercury 100	TI Thallium 30	Pb Lead 10	Bi Bismuth 5	Po Polonium	At Astatine	Rn Radon
Fr Francium	Ra Radium	Actinium	Rf Rutherfordium	Db Dubium							•					-	·
			Ce Cerium 5	Pr Praseodymium 10	Nd Neodymium 5	Pm Promethium	Sm Samarium 5	Eu Europium 5	Gadolinium	Tb Terbium	Dysprosium 5	Ho Holmium	Er Erbium	Tm	Yb Ytterbium	Lu	
			Th Thorium 5	Pa Protactinium	U ^{Uranium} 10	Np Neptunium	Pu Plutonium	Am Americium	Cm Curium	Bk Berkelium	Cf Californium	Es Einsteinium	Fm Fermium	Md Mendelevium	No Nobelium	Lr Lawrencium	

White numbers define - Units selected Elements for Polychrometer (35). All Blue & Green Elements detectable using Monochrometer (selectable)

Data herein contained are provided for general information purpose only and are not binding. Mersen shall have no liability whatsoever with respect to information contained herein. Duplication, reproduction or translation of any information contained herein, in whole or in part, is strictly prohibited without prior written consent of Mersen. Our materials are in conformity with the RoHS-Directive (Restriction of the use of certain Hazardous Substances in electrical and electronic equipment). Besides Mersen guarantees the application of the European Community REACH-Regulation (Registration, Evaluation, Authorization and Restriction of Chemical substances) to all its plants located in Europe.

A WORLD EXPERT in materials and solutions for high temperature processes

A GLOBAL PLAYER

Global expert in materials and solutions for extreme environments as well as in the safety and reliability of electrical equipment Mersen designs innovative solutions to address its clients specific

needs to enable them to optimize their manufacturing process in sectors such as energy, transportation, electronics, chemical, pharmaceutical and process industries.

Contact in North America **MERSEN USA BN Corp.**

Bay City Branch, 900 Harrison Street Bay City, MI 48708, USA Tel.: +1 989 894 29 11 Fax: +1 989 895 77 40

Contact for Europe

MERSEN France Gennevilliers SAS 41 rue Jean Jaurès - BP 148 F-92231 GENNEVILLIERS CEDEX FRANCE Tel: +33 (0) 1 41 85 45 55 Fax: +33 (0) 1 41 85 43 53 E-mail: semicon@mersen.com

www.mersen.com

Contact for Asia

MERSEN Kunshan Co. Ltd. #29 South Taihu Road, Kunshan Development Zone, Kunshan, Jiangsu Province, 215334, PR CHINA Tel.: +86 512 5763 9808 Fax: +86 512 5763 9811