A 'Good Brush' is one that is best matched to the machine. It is the best compromise because, whether we like it or not, it is a part that is subject to wear.

A good brush must have a set of properties, some of which are more important than others, that can be reduced to two essential qualities:

- **Moderate wear of the brush:** excessive wear would require increased monitoring of the machine, particularly due to the risk of reduced internal insulation resistance, would require high maintenance costs, and there is also a risk of malfunctions due to an abnormally low thickness of the patina (film) on the commutator / slip ring.

- **Respect for the commutator or slip ring:** repair costs for a damaged commutator or slip ring are always high, and can cause unexpected and long term shutdowns of the machine.

The most frequent causes are:

- **Metal wear by mechanical abrasion,** due to:
 - excessive abrasiveness of the brush material
 - a load below the minimum
 - or a temperature below the minimum
 - too low a spring pressure

- **Abnormal temperature rise,** beyond the limits imposed by the manufacturer, and exceeding the temperature at which the commutator or the slip ring was stabilized

- **Metal burns** by frequent sparks or electric arcs, that can cause local or repetitive deformations, in a pattern which may or may not be related to the slot pitch or the pole pitch

The brush works correctly within a fairly wide or narrow range of speeds and electrical loads, the limits of which depend on the material and the assembly. Choosing a brush for an application consists of best matching its mechanical and electrical properties to the conditions of the machine.

The machine itself must have suitable friction properties; this is particularly true for the commutator / slip ring that is in contact with the brush.
03 - SPARKS (electrical arcing)

Regardless of the source, sparking is always a potential problem since it is a damaging form of the electrical energy that increases the temperature far above the melting temperature of copper.

The effects of sparks increase with:
- Increasing decay energy, in other words with increasing self-inductance of the armature
- Decreasing decay time, in other words as the machine speed increases
- Decreasing surface area available to the spark, in other words as the number of brush contact points on the commutator / slip ring decreases

Effects and notation of sparks are disclosed in our Technical Note TDS-14 "Brush sparking".

The spark is always caused by an excessive voltage difference between the brush and the commutator / slip ring, resulting from a break in the electrical contact between the friction surfaces.

Direct causes may be:
- **MECHANICAL:**
 - with abnormal, disordered and chaotic contact breaks caused by shocks or vibrations due to unstable and insufficient dynamic balancing of the brush on the commutator / slip ring
- **ELECTRICAL:**
 - Insulation fault in coils
 - Bad quality of voltage / current of the power supply (electronic power converter)
 - For DC machines: with abnormal, necessary and inevitable contact breaks caused by the passage of the segments under the brush, or incorrectly adjusted commutation (neutral line setting, equidistance of brush arms, tangential brush covering, brush grade…)

Therefore in order to attenuate or eliminate sparking, accidental contact separations must be avoided, and/or the voltage drop between the brushes and sliding surface has to be limited.

A good brush has the following two main properties:
- **Dynamic stability**, requiring:
 - Stable and moderate friction
 - High capacity to absorb shocks and vibrations
- **Commutating ability**, this can be defined as the capability of the brush to reverse the current without producing any sparks dangerous to the commutator.

04 - COMMUTATION (DC machine)

Commutation refers to all electrical phenomena related to reversing the current in the armature coil being short-circuited by the brush during the transfer time for one segment to move across the thickness t of the brush. By definition, this transfer time is called the **mechanical commutation time**.

Reversal time

The current reversal time may be greater than, equal to or less than the mechanical commutation time, depending on the reactance voltage \(e_r \), the voltage on auxiliary poles \(e_S \) and the voltage drop at the contact surface under the brushes \(\Delta U \).

The reactance voltage reduces the reversal speed; on the other hand, the compensation voltage induced by the auxiliary poles increases the reversal speed.

MERSEN COPYRIGHT 2017
As the difference between the reversal time and the commutation time increases,
- the difference in the voltage between the brush and the commutator / slip ring segment increases,
- and commutation sparks become more dangerous.

When the reversal time is too long, an under-commutation condition occurs and sparks appear at the brush output.

When the reversal time is too short, an over-commutation condition occurs and sparks appear at the brush input.

Voltage drop at the contact under the brush

The voltage drop at the contact under the brushes ΔU, forms a resistance to the passage of commutation currents; it has a damping effect that is small compared to that provided by the auxiliary poles. In other words, compensation by the brush is complementary to the compensation provided by the auxiliary poles.

The value of voltage drop depends not only on the brush material but also on the current density, the temperature and applied pressure, the speed, polarity and condition of the surfaces in contact, the surface material, and also the condition of the film, etc.,

The voltage drop at the contact of a brush that is commutating correctly shall be moderate to avoid any abnormal temperature rise and any degradation of the sliding contact performance due to the electrical losses (for calculation of losses, see TDS05). Moreover it has an influence on the commutation and current balance between brushes. It must satisfy three main conditions:

• relatively high
• gradually increasing as a function of the current in the brush
• stable with time and not very dependent on temperature.

These three conditions actually express that the distribution of points through which the current passes, should be uniform and stable over the entire friction surface of the brush; this is a fundamental theoretical condition for good commutation. It is also confirmed by the appearance of the film (regular and uniform), which always faithfully reflects operating conditions and the commutation quality; the first thing to do when searching for brush problems is always to inspect the film.

05 - FILM

Inspection of the film is necessary for the diagnostic of the “state of health” of your rotating electrical machine. You can refer to our Technical note TDS-13 "Film aspects" which sets out various common and typical aspects of film conditions and commutator / slip ring faults, and their signification.

The film is a complex mixture which is deposited on the commutator / slip ring. Its stability depends on the balance of its components.

Its three main components are:

• carbon (mainly graphite)
• water (from humidity of the air)
• metal oxides.
PURPOSE OF THE CONSTITUENTS

The moisture in the environment, and the carbon (graphite) deposited by the brush maintain friction within allowable limits, and consequently ensure that the brush mechanical behavior is satisfactory.

Metal oxides (copper or ferrous) formed and regenerated from the sliding surface and the oxygen in the air are responsible for the physiochemical stability of the film. Satisfactory electrical and mechanical behavior of the brush depend on this compound formed by metal oxides and deposited graphite.

Thus the importance of the graphite deposit controls the appearance of the film, and also defines the limits of the electrical load and the speeds between which the brush works correctly.

An abundant graphite deposit gives a dark, shiny film suitable for operation at no load during long periods, but which is not appropriate for machines with difficult commutation, or which are highly loaded.

A small deposit of graphite gives a light, thin, slightly satin and relatively fragile film, suitable for difficult commutation with severe and frequent overloads, however this type of film is not suitable for very low loads, or for frequent and prolonged operation.

FIRST ASSESSMENT FROM THE FILM

It may be considered that a thin and light P4 type film (note TDS-13) indicates:

• moderate friction
• good commutation
• low temperature rise in the commutator / slip ring

This is an “ideal” film.

An excessively thin film type P2 can indicate:

• high friction
• very low brush wear

This film tends to develop towards a P12 type film, with preferential transfer of current and wear of commutators / slip rings.

A thick, dark and glossy film type P6 suggests:

• moderate friction
• moderate brush wear
• very small commutator / slip ring wear

If the film evolves to an excessively thick, very dark and matt film, it will be a symptom of:

• high commutator / slip ring temperature rises
• poor commutation (sparking)
• possible burn marks on segments or rings
• high brush wear

Note: The graphite content of a film is therefore a very important factor in correct operation of a brush. It depends on the roughness of the commutator / slip ring, which depends on the brush material, and also partly depends on the product manufacturing method.
THE BRUSH MANUFACTURER HAS THREE INDEPENDENT VARIABLES (CONSTITUENTS, AGGLOMERATION AND TREATMENTS) THAT CAN BE ADJUSTED WHEN SELECTING OR CREATING A BRUSH GRADE FOR A GIVEN APPLICATION.

CONSTITUENTS
Graphite is the common constituent of all our brush grades. It is a crystalline compound of carbon layers. Each layer is composed of sheets of carbon atoms assembled in a hexagonal pattern (also called graphene layers). These layers can slide between each other conferring solid lubricant property to graphite.

You can refer to our Carbon Brush Technical Guide which explains the origin of main constituents for each grade family.

AGGLOMERATION OF CONSTITUENTS
Constituents are agglomerated with carbonated binders which, after distillation and cokefaction, leave a solid residue of carbonated bonds between the grains of the basic constituents.

As the quantity of the binder added into the mixture increases, the bonds become more numerous and the brush becomes “harder”. Conversely, if the amount of this binder is reduced, the number of bonds is reduced and the product becomes “softer”.

“Hard” brushes have low internal damping capacity (high Shore), they generally produce low wear but do not adapt satisfactorily to fast machines.

On the other hand, “soft” brushes have high internal damping (low Shore) and adapt well to fast machines, but normally at the price of higher wear.

TREATMENTS
Treatments are impregnations which take place after thermal treatment. They consist of inserting dissolved or molten foreign elements into the brush porosity, in order to correct one of the basic characteristics of the material.

There is a very wide variety of impregnation products, but very few are used frequently, and they can be grouped into two sets:

- Polymerizable resins used to control the patina or provide the moisture necessary to lubricate friction surfaces when the ambient air is relatively dry; these resins always increase the mechanical characteristics of the brush material and are adapted to higher pressures

- Metals may also be added into the brush in the form of metal salts, or in the molten state in order to reduce the voltage drop at the contact and to increase the allowable specific load, while maintaining the advantages of the basic material’s resistance to wear.

Note: All treatments that tend to increase the patina thickness also reduce the brush commutation ability. Therefore these treatments should be used with caution.

Mersen has developed a wide range of brush grades to meet even the most demanding applications. We recommend you to contact the Customer Technical Assistance Service to correctly select the most suitable grade for your specific application. To help us please fill the description form page 32 of our “Carbon brushes for motors and generators” technical guide.

MERSEN COPYRIGHT 2017
Shapes and mountings, in other words special brush machining features and the various methods of fixing accessories such as cables, rivets, plates, limit stops, etc. have been designed and made so as to guarantee:

- High brush stability even at maximum speeds, provided that commutator cylindrical defects, segment deformations, shocks and vibrations and brush-holder imperfections remain within allowable limits
- Good contact with the external circuit during the entire life of the brush, without a risk of slow deterioration (aging) or fast deterioration (ruptures) under the effect of heating and vibrations.

In order to satisfy the changing dynamic conditions a stable brush-holder mounting must:

- Guarantee good contact between the brush and the commutator through many stable and uniformly distributed support points across the entire contact surface
- Provide uniform distribution of the bearing force provided by the brush-holder pressure system, to ensure that the pressure remains constant on the friction face (see TDS-11)
- Guarantee fast and efficient damping of shocks and vibrations

THREE PRINCIPLES ARE USED TO ACHIEVE THESE THREE RESULTS:

Symmetrical shapes
The most rational shape for a motor rotating in two directions is the straight brush (radial type) because it is symmetrical.

American manufacturers tend to favor inclined brushes, typically inclined at 14 degrees for a unidirectional machine (trailing) and 25-30 degrees for a bi-directional machine.

Correct operation of the radial brush in both directions obviously assumes low clearance between the brush and the brush-holder, in order to limit the effect of the brush tipping inside its holder whenever the direction of operation is reversed. It is preferable to use multiple wafers, generally 2 or 3 depending on the commutator geometry.

Division of the brush
On a high speed DC machine, the single wafer brush has to be replaced by an assembly consisting of two or three equal, parallel and mutually independent wafers, where each wafer is electrically independent and has its own cables in order to improve mechanical and electrical contact on the commutator / slip ring.

This increased mounting complexity is compensated by improved commutation and lower brush wear.

Subdivision of the brush is limited only by the minimum allowable thickness, which controls:

- The strength, and consequently whether or not cables can be fixed in the wafer
- The machining complication which affects the price of the brush
Particular attention shall be paid when mounting a split brush. It is important that:

- Wafers shall be pressed down to the commutator / slip ring by the means of a resilient pad which uniformly distributes the force of the pressure system (threaded on the flexibles or glued, design depending on the pressure system)
- The resilient pad shall allow a slight movement of the brush wafers relative to each other so that some wafers always remain in contact with the commutator / slip ring regardless of its out of round (within reasonable limits)

Damping

On a high speed and poorly balanced machine, shocks and vibrations transmitted to the brush by moving masses must be efficiently dampened.

This is why high impedance and stable (in other words sensitive to aging under the effect of temperature or time) shock absorbing elements are adapted in the manufacture of the brush.

These damping systems are elastomers and fixed to the top of the brush, most frequently by gluing. Threading on two (or more) flexible is also possible.

Furthermore, it is a good idea to fit a hard insulating plate on the damper, which will:

- prevent the pressure system from damaging the elastomer
- and uniformly distribute the thrust of the brush pressure system spring on the top of the brush

Finally and if necessary, the plate must maintain the pressure system in a fixed position, due to an appropriate design of the pad.

Note: Vibrations transmitted to the brush and which need to be damped, lie within a wide range of frequencies and amplitudes. In principle, high frequency and low amplitude vibrations are damped using the same material as the brush, due to its elastic or plasto-elastic deformation capabilities.

However, **low frequency and high amplitude vibrations are absorbed in the brush shock absorbers.**