CORROSION RESISTANT

Reactors

Columns

Vessels

- Graphite
- PTFE lined steel
- Tantalum
- Zirconium
- Titanium
- Nickel alloys
- Internals & accessories
WORLDWIDE LEADER IN CORROSION-RESISTANT PROCESS EQUIPMENT, WITH A SOLUTION-ORIENTED APPROACH

The Mersen AntiCorrosion Equipment activity is internationally recognized for its expertise in the design and manufacture of process equipment, manufactured from corrosion resistant materials (graphite, silicon carbide, tantalum, zirconium, PTFE). Mersen also has an in-depth knowledge of the process technologies requiring our AntiCorrosion Equipment and can provide offers from the basic equipment up to skid-mounted turn-key process packages.
Mersen designs and manufactures distillation and absorption columns in graphite, PTFE lined steel, tantalum, titanium, zirconium and nickel alloys.

Our columns are manufactured in accordance with the following international construction codes: ASME, EN13445, CODAP, AD 2000-Merkblatt

Whatever the constraints of your process, we have the solution within our extensive range of materials.

<table>
<thead>
<tr>
<th>DESIGN PRESSURE</th>
<th>GRAPHITE</th>
<th>PTFE LINED STEEL</th>
<th>METALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>max 3bar</td>
<td>10barG</td>
<td>30barG and above</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VACUUM RESISTANCE</th>
<th>GRAPHITE</th>
<th>PTFE LINED STEEL</th>
<th>METALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Optional</td>
<td>OK for clad or solid options Possible for loose lined option (with convolutions and vacuum pins)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DESIGN TEMPERATURE</th>
<th>GRAPHITE</th>
<th>PTFE LINED STEEL</th>
<th>METALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 400°C</td>
<td>230°C</td>
<td>300°C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEALING</th>
<th>GRAPHITE</th>
<th>PTFE LINED STEEL</th>
<th>METALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasket between sections (max 2.5m)</td>
<td>No gasket required (max 1.5m)</td>
<td>Welding or gasket when required</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAXIMUM DIAMETER</th>
<th>GRAPHITE</th>
<th>PTFE LINED STEEL</th>
<th>METALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 2,500 mm diameter (80") higher diameter on special request</td>
<td><1,600 mm [64"] in seamless PTFE</td>
<td>no limit based on design</td>
<td></td>
</tr>
<tr>
<td>>1,600 mm [64"] welded PTFE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERMEABILITY</th>
<th>GRAPHITE</th>
<th>PTFE LINED STEEL</th>
<th>METALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impregnated graphite</td>
<td>PTFE natural permeability</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>GRAPHITE</th>
<th>PTFE LINED STEEL</th>
<th>METALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stripping, absorption, gas cleaning</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHEMICALS COMPOUNDS</th>
<th>GRAPHITE</th>
<th>PTFE LINED STEEL</th>
<th>METALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCl, HF, H₂SO₄, HBr</td>
<td></td>
<td>Tantalum for HCl process Zirconium for acetic acid process Titanium for various processes</td>
<td></td>
</tr>
</tbody>
</table>
Mersen graphite columns offer reliable and corrosion-resistant solutions for the processes in the organic and inorganic chemical industries. The columns are manufactured with Graphilor®, an exclusive impregnated graphite developed by Mersen.

WHY MERSEN GRAPHLILOR® COLUMN?

- High corrosion-resistance to all acids (HCl, H₂SO₄, HF, H₂SiF₆, H₃PO₄, monochloracetic acid...) thanks to a variety of impregnated graphite grades (XBS, XC)
- Maximum temperature design: 400°C
- Conductive material versus non-conductive plastic solutions
- Customized designs with large diameters (up to 2.5 meters)
- Mechanical design by FEA (ANSYS)
GRAPHITE COLUMNS

Mersen Graphilor® columns are typically used for:
- Absorption
- Desorption / Distillation / Stripping
- Purification of flue gas

TECHNICAL CHARACTERISTICS
- Inside columns diameter: from 250mm to 2,500mm
- Minimum nozzle diameter: DN25
- Maximum operating temperature: up to 400°C when Graphilor® Xc is selected
- Maximum operating pressure: 3 barG

GRAPHITE INTERNALS

Based on customer’s drawings or process requirement, we supply internals:
- Distribution trays
- Sieve or Bubble cap trays
- Raschig rings

MERSEN GRAPHITE RASCHIG RINGS - TECHNICAL CHARACTERISTICS
- Withstand high temperatures (max 200°C)
- Resist thermal shocks
- Perfectly resistant to almost all industrial corrosive agents

FOCUS APPLICATION

HCl ADIABATIC ABSORPTION

The industry of halogenated products releases gaseous effluents loaded with corrosive components such as hydrogen chloride (HCl), bromide (HBr) of fluoride (HF). The scrubbing of these acidic gases with water is a common application for our atmospheric packed columns manufactured from Graphilor® where very low emission levels are required. A valuable aqueous acid solution is also recovered, which can easily be stored at ambient conditions. It covers many requirements in the field of VCM, PVC, TDI and other similar industries.
Armylor® PTFE loose lined columns combine the corrosion resistance of PTFE and the safety of the seamless lining process together with the mechanical resistance of the steel shell.

WHY MERSEN ARMYLOR® COLUMN?

- Armylor® is a heavy duty, seamless PTFE liner
- Wide corrosion resistance range (resistant to all known chemicals with the exception of alkaline metals and fluorine at high temperature)
- Dual protection design for extreme corrosion process: PFA coating together with PTFE liner
- Vacuum withstanding with graphite sleeves
- Thermal shock resistance
Hydrogen chloride (HCl) gas can be easily recovered from spent recycled hydrochloric acid effluent by a stripping operation performed in our corrosion resistant columns. Our range of high performance materials (Graphilor®, Armylor® PtFe or tantalum cl-clad®) can perform in the most severe operating conditions. The HCl gas is desorbed from the liquid to obtain 100% pure concentration. Ultra low dehydration level can easily be met to fulfil the requirement of the most demanding industries such as:

- High purity silicon for solar cells
- Electronics applications
- Organic chemistry
- Various metallurgical processes

The best solution to operate at maximum pressure is a column comprising of an internal PFA coating on carbon steel shell, together with a PTFE liner and graphite sleeve.

TECHNICAL CHARACTERISTICS

- PTFE liner thickness: 4mm standard and up to 10mm for heavy duty
- Seamless liners up to 64” / DN1600mm and welded liners over 64” / DN1600mm
- Maximum pressure: up to 10 bars
- Maximum temperature range: -50°C to 230°C
- Option: Vacuum resistance system to withstand partial vacuum
- Option: Dual protection design (ECTFE or PFA +PTFE) possible for more severe applications
- Option: Lining with Modified PTFE to limit permeation

FOCUS APPLICATION

STRIPPING HCl

Hydrogen chloride (HCl) gas can be easily recovered from spent recycled hydrochloric acid effluent by a stripping operation performed in our corrosion resistant columns. Our range of high performance materials (Graphilor®, Armylor® PTFE or tantalum cl-clad®) can perform in the most severe operating conditions. The HCl gas is desorbed from the liquid to obtain 100% pure concentration. Ultra low dehydration level can easily be met to fulfil the requirement of the most demanding industries such as:

- High purity silicon for solar cells
- Electronics applications
- Organic chemistry
- Various metallurgical processes
WHY MERSEN CL-CLAD® COLUMN?

- Combination of high corrosion & severe process conditions
- Exceptional corrosion resistance of Tantalum
- Full vacuum applications
- High reliability thanks to metallic design
- Very low maintenance
- Low total cost of ownership
- Safety improvement in sensitive applications
CL-Clad® TECHNOLOGY

With this process, a thin layer of tantalum is brazed onto the entire surface of a carbon steel base plate. The columns made from such material combine the mechanical resistance of a metallic equipment with the exceptional corrosion resistance of tantalum. As a result, CL-Clad® technology is the most reliable solution to handle highly corrosive processes in the most severe service conditions (high pressure, full vacuum and high temperature).

FOCUS APPLICATION

TANTALUM CL-Clad® ARE SUITABLE FOR :

- HCl Stripping at high pressure
- Strong acids processing (H₂SO₄, HNO₃, HBr...)
- Multipurpose API Reactors

HCI STRIPPING AT HIGH PRESSURE

For production of high pressure HCl up to 5barG, the natural permeability of PTFE liner limits the use of Armylor® columns. In such cases, a design with reactive metal layer such as Tantalum appears as the most reliable solution. Mersen has several references of Tantalum CL-Clad® columns working satisfactorily under severe process conditions.
METALLIC COLUMNS

A long experience in the design and fabrication of reactive metal equipment combined with an international material sourcing policy allows Mersen to provide quality and cost-effective solutions.

Zirconium is suitable in corrosive environments such as formic acid, strong alkaline, hydrochloric acid, salt solution, organics etc., notably for the production of acetic acid where Mersen supplies both solid and explosive clad zirconium columns and vessels.

Type of columns in the acetic acid process
- drying columns
- light-end columns

For the treatment of coke oven gas, Mersen is specialized in the supply of de-acidification and stripping columns, for the removal of ammonia, sulphur dioxide, cyanuric acid, etc.

ZIRCONIUM COLUMNS TITANIUM & NICKEL ALLOYS COLUMNS
Mersen provides Graphilor® or metallic quenches for the cooling of hot corrosive gases. Graphilor quench can be combined with a graphite Polybloc.

- demisters
- spargers
- distributors, re-distributors
- support grids
- packing rings: raschig rings, saddles, structured packing
- special pipes

MERSEN GRAPHITE RASCHIG RINGS TECHNICAL CHARACTERISTICS
- Withstand high temperatures (max 200°C),
- Resist thermal shocks
- Perfectly resistant to almost all industrial corrosive agents

<table>
<thead>
<tr>
<th>Nominal Size (")</th>
<th>Dimensions OD/IDxL (mm)</th>
<th>Bulk density (kg/m³)</th>
<th>Bulk number (pc/m³)</th>
<th>Specific Surface (m²/m³)</th>
<th>Void volume (%)</th>
<th>Packing factor F (m⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>¾"</td>
<td>18/11x18</td>
<td>700</td>
<td>130 800</td>
<td>259</td>
<td>0.62</td>
<td>1070</td>
</tr>
<tr>
<td>1"</td>
<td>25/16x25</td>
<td>660</td>
<td>48 800</td>
<td>187</td>
<td>0.65</td>
<td>700</td>
</tr>
<tr>
<td>1" ¼</td>
<td>32/22x32</td>
<td>590</td>
<td>23 200</td>
<td>146</td>
<td>0.68</td>
<td>460</td>
</tr>
<tr>
<td>1" ½</td>
<td>37/25x37</td>
<td>600</td>
<td>15 000</td>
<td>126</td>
<td>0.67</td>
<td>410</td>
</tr>
<tr>
<td>2"</td>
<td>51/38x51</td>
<td>500</td>
<td>5 750</td>
<td>92</td>
<td>0.73</td>
<td>230</td>
</tr>
<tr>
<td>3"</td>
<td>86/60x86</td>
<td>570</td>
<td>1 200</td>
<td>54</td>
<td>0.69</td>
<td>160</td>
</tr>
</tbody>
</table>